## 4 FLUTE 30° HELIX STANDARD

SQUARE AND BALL END



#### **GENERAL INFORMATION**

Used for general purpose milling in most materials of medium hardness such as steel, brass, iron and non-ferrous materials. Made from premium submicron grain carbide. All recommendations should be considered as starting points for the application. An increase of 10% increments on both feed and speed is recommended to reach optimal performance. The best way to ensure the optimal cutting action is by examining the chips as they are released from the work piece to make sure they are not too blue in color which would indicate that the tool is running HOT and slower feeds may be needed at this time. Another way to determine optimal cutting rates is by examining the chips as they are released to make sure they are not too long in length and should be little 6's and 9's in shape. If the chips are too long then the material is not breaking away form the mill adequately to ensure a smooth cutting action. Speeds and feeds would need to be adjusted and or another style end mill might need to be used. When using a coating on an end mill, an increase of 20% is normally recommended for both feed and speed rates.

### **APPLICATION SPECIFICATIONS**

4 flute 30° helix end mills generally are used in finishing applications to ensure dimensional accuracy and, that work piece finishes can be achieved. 4 flute end mills are stronger than either the 2 or 3 flute designs. This added rigidity allows higher metal removal rates with minimum deflection. Limited chip volume area restricts stock removal rates and deep plunge cutting is not recommended. With the evolution of carbide end mills today there are many finishing applications that can and will use additional flutes and nomenclature designs to achieve the best results based on the material being machined.



Slotting



Profiling/ Finishing



**Contour** Finishing

All general information and application specifications are to be used as guides and starting points only. Because of the multitude of variables used in the milling process, use this information as a guideline only. All speeds and feeds are also suggested starting pints. They may be increased or decreased depending on machine condition, depth of cut, finish requirements, coolant, etc.



# 2 & 4 FLUTE METRIC UNCOATED

| Material                         | СЕМ      | Chip load per tooth |       |       |       |
|----------------------------------|----------|---------------------|-------|-------|-------|
| Material                         | SFM      | 3mm                 | 6mm   | 12mm  | 25mm  |
| Aluminum Alloys                  | 600-1200 | .0010               | .0020 | .0040 | .0080 |
| Brass                            | 200-350  | .0010               | .0020 | .0030 | .0050 |
| Bronze                           | 200-350  | .0010               | .0020 | .0030 | .0050 |
| Carbon Steel                     | 100-600  | .0010               | .0015 | .0030 | .0060 |
| Cast Iron                        | 80-350   | .0010               | .0015 | .0030 | .0060 |
| Cast Steel                       | 200-350  | .0005               | .0010 | .0020 | .0040 |
| Cobalt Base Alloys               | 20-80    | .0005               | .0008 | .0010 | .0020 |
| Copper                           | 350-900  | .0010               | .0020 | .0030 | .0060 |
| Die Steel                        | 50-300   | .0005               | .0010 | .0020 | .0040 |
| Graphite                         | 600-1000 | .0020               | .0050 | .0080 | .0100 |
| Inconel/ Monel                   | 30-50    | .0005               | .0010 | .0015 | .0030 |
| Magnesium                        | 900-1300 | .0010               | .0020 | .0040 | .0080 |
| Malleable Iron                   | 200-500  | .0005               | .0010 | .0030 | .0070 |
| Nickel Base Alloys               | 50-100   | .0002               | .0008 | .0010 | .0020 |
| Plastic                          | 600-1200 | .0010               | .0030 | .0060 | .0100 |
| Stainless Steel - Free Machining | 100-300  | .0005               | .0010 | .0020 | .0030 |
| Stainless Steel - Other          | 50-250   | .0005               | .0010 | .0020 | .0030 |
| Steel - Annealed                 | 100-350  | .0010               | .0020 | .0030 | .0050 |
| Steel - Rc 18-24                 | 100-500  | .0004               | .0008 | .0015 | .0045 |
| Steel - Rc 25-37                 | 25-120   | .0003               | .0005 | .0010 | .0030 |
| Titanium                         | 100-200  | .0005               | .0008 | .0015 | .0030 |

### COATED

| Matarial                         | CEM       | Chip load per tooth |       |       |       |
|----------------------------------|-----------|---------------------|-------|-------|-------|
| Material                         | SFM       | 3mm                 | 6mm   | 12mm  | 25mm  |
| Aluminum Alloys                  | 900-1800  | .0010               | .0020 | .0040 | .0080 |
| Brass                            | 300-525   | .0010               | .0020 | .0030 | .0050 |
| Bronze                           | 300-525   | .0010               | .0020 | .0030 | .0050 |
| Carbon Steel                     | 150-900   | .0010               | .0015 | .0030 | .0060 |
| Cast Iron                        | 120-525   | .0010               | .0015 | .0030 | .0060 |
| Cast Steel                       | 300-525   | .0005               | .0010 | .0020 | .0040 |
| Cobalt Base Alloys               | 30-120    | .0005               | .0008 | .0010 | .0020 |
| Copper                           | 525-1350  | .0010               | .0020 | .0030 | .0060 |
| Die Steel                        | 75-450    | .0005               | .0010 | .0020 | .0040 |
| Graphite                         | 900-1500  | .0020               | .0050 | .0080 | .0100 |
| Inconel/ Monel                   | 45-75     | .0005               | .0010 | .0015 | .0030 |
| Magnesium                        | 1350-1950 | .0010               | .0020 | .0040 | .0080 |
| Malleable Iron                   | 300-750   | .0005               | .0010 | .0030 | .0070 |
| Nickel Base Alloys               | 75-150    | .0002               | .0008 | .0010 | .0020 |
| Plastic                          | 900-1800  | .0010               | .0030 | .0060 | .0100 |
| Stainless Steel - Free Machining | 150-450   | .0005               | .0010 | .0020 | .0030 |
| Stainless Steel - Other          | 75-375    | .0005               | .0010 | .0020 | .0030 |
| Steel - Annealed                 | 150-525   | .0010               | .0020 | .0030 | .0050 |
| Steel - Rc 18-24                 | 150-750   | .0004               | .0008 | .0015 | .0045 |
| Steel - Rc 25-37                 | 38-180    | .0003               | .0005 | .0010 | .0030 |
| Titanium                         | 150-300   | .0005               | .0008 | .0015 | .0030 |

# PROBLEMS / SOLUTIONS

| Problem/Cause                        | Solution                                                                                 |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Breakage                             |                                                                                          |  |  |
| Feed is too heavy                    | Reduce feed rate                                                                         |  |  |
| Cut is too heavy                     | Decrease width and depth-of-cut                                                          |  |  |
| Overhang of tool is too much         | Hold shank deeper, use shorter end mill                                                  |  |  |
| Wear is too much                     | Regrind at earlier stage                                                                 |  |  |
| W                                    | ear                                                                                      |  |  |
| Speed is too fast                    | Decrease spindle speed, use another coolant                                              |  |  |
| Hard work material                   | Use Coatings (TiN, TiCN, TiAIN)                                                          |  |  |
| Improper speed and feed (too slow)   | Increase feed and speed                                                                  |  |  |
| Improper helix angle                 | Change tool to correct helix angle                                                       |  |  |
| Primary relief angle is too large    | Change to smaller relief angle                                                           |  |  |
| Recutting chips                      | Change feed and speed, Change chip size or clear chips with more coolant or air pressure |  |  |
| Short 7                              | Tool Life                                                                                |  |  |
| Cutting friction is too much         | Regrind at earlier stage                                                                 |  |  |
| Hard work material                   | Use Coatings (TiN, TiCN,TiAIN)                                                           |  |  |
| Improper helix and relief angle      | Change to correct helix angle and primal relief                                          |  |  |
| Chi <sub>l</sub>                     | pping                                                                                    |  |  |
| Feed rate too heavy Reduce feed rate |                                                                                          |  |  |
| Feed too heavy on first cut          | Reduce feed rate on first cut                                                            |  |  |
| Lack of rigidity (machine & holder)  | Use better machine or tool holder or change parameters                                   |  |  |
| Lack of rigidity (tool)              | Use shorter tool, hold shank deeper, try climb milling                                   |  |  |
| Tool cutting corner too sharp        | Decrease primary relief and cutting angle, reduce radial width-of-cut                    |  |  |
| Chip Packing                         |                                                                                          |  |  |
| Cut too heavy                        | Decrease width and depth-of-cut                                                          |  |  |
| Not enough chip clearance            | Use end mill with less flutes                                                            |  |  |
| Not enough coolant                   | Use higher coolant pressure and reposition nozzle to point of cut or use air pressure    |  |  |

# PROBLEMS / SOLUTIONS

| Burrs                                     |                                                                                     |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Wear on primary relief is too much        | Regrind earlier stage                                                               |  |  |
| Incorrect feed and speed rates            | Correct cutting parameters                                                          |  |  |
| Improper helix angle                      | Change to correct cutting angle                                                     |  |  |
| Rough Surface Finish                      | Start operation with initial surface cut                                            |  |  |
| Feed rate too heavy                       | Reduce feed rate                                                                    |  |  |
| Cutting speed is too slow                 | Increase RPM                                                                        |  |  |
| Wear is too much                          | Regrind at earlier stage                                                            |  |  |
| No end tooth concavity                    | Grind concave angle on bottom teeth                                                 |  |  |
| Recutting chips                           | Change feed and speed, change chip size or clear chips with coolant or air pressure |  |  |
| Chat                                      | tering                                                                              |  |  |
| Feed and speed too fast                   | Correct feed and speed                                                              |  |  |
| Lack of rigidity (machine & holder)       | Use better machine or tool holder or change parameters                              |  |  |
| Poor set up                               | Improve clamping rigidity                                                           |  |  |
| Cut is too heavy                          | Decrease width and depth of cut                                                     |  |  |
| Overhang of tool is too much              | Hold shank deeper, use shorter end mill                                             |  |  |
| Lack of relief                            | Decrease relief angle, make margin:<br>(touch primary with oil stone)               |  |  |
| Side Wall Tape                            | r in Work piece                                                                     |  |  |
| Feed rate too heavy                       | Reduce feed rate                                                                    |  |  |
| Overhang of tool is too much              | Hold shank deeper, use shorter end mill                                             |  |  |
| Too few flutes                            | Use multi flute end mills, use end mill with higher rigidity                        |  |  |
| No Dimensional Accuracy                   |                                                                                     |  |  |
| Cut is too heavy                          | Decrease width and depth of cut                                                     |  |  |
| Lack of accuracy (machine & holder)       | Repair machine or holder                                                            |  |  |
| Rigidity is not enough (machine & holder) | Change machine or tool holder or change parameters                                  |  |  |
| Too few flutes                            | Use multi flute end mills, use end mill with higher rigidity                        |  |  |



### RUSHMORE USA COATING INFORMATION

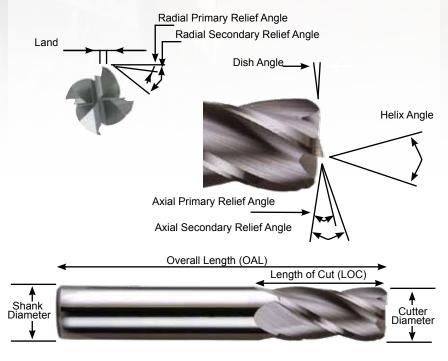
| Coating              | TiN<br>Titanium Nitride                                                                                                                                                     | TiCN<br>Titanium Carbontride                                                                                                            | AITiN<br>Aluminum Titanium<br>Nitride                                                                                                                                                                                                                                                                                                 |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications         | General purpose coating for machining ferrous materials. Less expensive than AITiN coating. Good low cost alternative to AITiN in applications not generating extreme heat. | Steels over 40 Rc and aluminum alloys.                                                                                                  | High performance coating for ferrous materials. Excellent high temperature resistance and hardness. Maintains high surface hardness at elevated temperature improving tool life and allowing faster feed rates. Produces aluminum oxide layer at high temperature which reduces thermal conductivity transferring heat into the chip. |  |
| Materials            | General purpose ferrous<br>materials                                                                                                                                        | Alloy steels, stainless steels,<br>and in high speed cutting<br>where moderate tempera-<br>tures are generated at the<br>cutting edges. | Alloy steels, stainless steels, tool steels, titanium, inconel, nickel and other aerospace materials.                                                                                                                                                                                                                                 |  |
| Color                | Gold                                                                                                                                                                        | Brown                                                                                                                                   | Dark Grey - Black                                                                                                                                                                                                                                                                                                                     |  |
| Structure            | Mono-layer                                                                                                                                                                  | Multi-layer                                                                                                                             | Multi-layer                                                                                                                                                                                                                                                                                                                           |  |
| Hardness             | 24GPa                                                                                                                                                                       | 37GPa                                                                                                                                   | Up to 38GPa                                                                                                                                                                                                                                                                                                                           |  |
| Thermal<br>Stability | 1100° F                                                                                                                                                                     | 750° F                                                                                                                                  | 1450° F                                                                                                                                                                                                                                                                                                                               |  |

| Coating         | nACo<br>Aluminum Titanium Nitride +<br>Silicon Nitride                                                                                                                                                                                                                                                            | ZrN<br>Zirconium Nitride                                                                                                                                                       |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications    | Is an extremely high heat resistance coating with high nanohardness. Especially suited for high performance milling and drilling with rigid set ups. nACo's hardness comes from it's nano-composite structure. Coating consists of nano crystalline AITiN grains embedded in an amorphous silicon nitride matrix. | High hardness, lubricity and abrasion resistance. Improves performance over uncoated carbide in a wide variety of nonferrous materials. Less expensive alternative to diamond. |  |
| Materials       | Alloy steels, stainless steels, tool steels, titanium, inconel, nickel and other aerospace materials.                                                                                                                                                                                                             | Abrasive non- ferrous alloys such as Brass,<br>Bronze, Copper and Abrasive Aluminum<br>Alloys                                                                                  |  |
| Color           | Black                                                                                                                                                                                                                                                                                                             | Light Gold                                                                                                                                                                     |  |
| Structure       | Multi-layer                                                                                                                                                                                                                                                                                                       | Mono-layer                                                                                                                                                                     |  |
| Hardness        | 45GPa                                                                                                                                                                                                                                                                                                             | 24.6GPa                                                                                                                                                                        |  |
| Thermal 1652° F |                                                                                                                                                                                                                                                                                                                   | 1100°F                                                                                                                                                                         |  |

### RUSHMORE USA COATING INFORMATION

| Material                      | Hardness  | 1st Choice | 2nd Choice |
|-------------------------------|-----------|------------|------------|
| Aluminum                      |           | ZrN        | TiCN       |
| Alloy Steel                   | 16-23 HRc | AITiN      | TiCN       |
| Alloy Steel                   | 23-38 HRc | AITiN      | nACo       |
| Alloy Steel                   | >38 HRc   | nACo       | AITiN      |
| Carbon Steel                  | 16-23 HRc | AITiN      | TiCN       |
| Carbon Steel                  | 23-38 HRc | AITiN      | nACo       |
| Carbon Steel                  | >38 HRc   | nACo       | AlTiN      |
| Hardened Steel                | >42 HRc   | nACo       | AlTiN      |
| Low Carbon Steel              | 13-23 HRc | AITiN      | TiCN       |
| Low Carbon Steel              | 23-38 HRc | AITiN      | nACo       |
| Low Carbon Steel              | >38 HRc   | nACo       | AlTiN      |
| Gray Cast Iron                | 18-22 HRc | nACo       | AlTiN      |
| Nodular Cast Iron             | 22-32 HRc | TiCN       | nACo       |
| Austenetic Stainless Steel    | <35 HRc   | TiCN       | nACo       |
| Martinsitic Stainless Steel   | <35 HRc   | nACo       | AlTiN      |
| Martinsitic Stainless Steel   | >=35 HRc  | nACo       | AlTiN      |
| Ni Alloys                     |           | nACo       | AlTiN      |
| PH Stainless Steel            | <35 HRc   | nACo       | AlTiN      |
| PH Stainless Steel            | >=35 HRc  | nACo       | AlTiN      |
| Ni, Co, Fe, Based Superalloys |           | nACo       | AlTiN      |
| High Si Aluminum              |           | ZrN        | TiCN       |
| Titanium                      |           | nACo       | AlTiN      |




# TECHNICAL GUIDE

### Confidential information for Rushmore sales purposes only.

Solid carbide end mills are rapidly replacing high speed steel end mills because production costs can be reduced as a result of the extreme metal removal rates which can be achieved with solid carbide end mills. When combined with the appropriate coating and the correct set up, optimal performance may be achieved.

It is important to comply with the following for the best performance results: Machine Capability: The machine must have the necessary rigidity to minimize spindle deflection and sufficient horsepower to perform at recommended speeds and feeds. Holders: Tool holders and collets must provide good concentricity between tool and machine spindle.

Workpiece: A secure and rigid workpiece to minimize deflection is needed. This is most important in climb milling operations. Because of the rigidity factor required in climb milling, speeds and feeds may be reduced by up to 25%.



